“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.
Export
Ivan Vanja Boroja
Compression of the commuting graph of rings and other algebraic structures
Autorstvo-Nekomercijalno-Deliti pod istim uslovima 3.0 (CC BY-NC-SA 3.0)
Dozvoljavate umnožavanje, distribuciju i javno saopštavanje dela, i prerade, ako se navede ime autora na način odredjen od strane autora ili davaoca licence i ako se prerada distribuira pod istom ili sličnom licencom. Ova licenca ne dozvoljava komercijalnu upotrebu dela i prerada. Osnovni opis Licence: http://creativecommons.org/licenses/by-nc-sa/3.0/rs/deed.sr_LATN Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-nc-sa/3.0/rs/legalcode.sr-Latn
Academic metadata
Doktorska disertacija
Prirodno-matematičke nauke
-
Univerzitet u Banjoj Luci
Prirodno-matematički fakultet
Other Theses Metadata
Compression of the commuting graph of rings and other algebraic structures
Prirodne nauke Matematika
Datum odbrane:18.07.2025.
Bojan Nikolić (predsednik komisije)
Vladimir Božović (član komisije)
Damjana Kokol Bukovšek (član komisije)
Dimitrije Čvokić (član komisije)
In thisthesisweinvestigatetherecentlyintroducedcompressedcommutinggraph Λ1(R)
of aunitalring R. Thisisagraphwhoseverticesareequivalenceclassesofelementsof R
according totherelation ∼ whichisdefinedas a ∼ b if andonlyif a and b generate the
same unitalsubring.Twoverticesareconnectedbyanedgeifandonlyiftheirrepresentatives
commute.Thisgraphcanbeseenasacompressionoftheregularcommutinggraph Γ(R). We
proveinthethesisthatformatrixalgebrasoverfinitefieldsthiscompressionisthebestpossible
compression thatinducesafunctorfromthecategoryofunitalringstothecategoryofgraphs.
Wealsodiscusssomepropertiesofthisgraph,forexample,thegraphgivesinformationabout
the setofunitalsubringsof R generated byoneelement.Thisviewwasappliedinourresult
characterizinginfiniteunitalringswithonlyfinitelymanyunitalsubrings.
In ourrecentarticlewewereabletocompletelydescribethegraph Λ1(M2(F)) for afinite
field F. Themaincontributionofthisthesisisthecompletedescriptionofthegraph Λ1(M3(F))
for aprimefield F = GF(p). Toachievethisgoalwecombinedmethodsfromfieldtheory,
projectivegeometryandcombinatorics.Wefirstdescribethesetofvertices,relyingonthe
Jordan formofmatrices,andthendeterminethestructureoftheneighborhoodofeachvertex.
The corepartofthegraphisthendescribedusingabijectivecorrespondencewithapoint-line
pairs intheprojectiveplaneover GF(p). Inaddition,wealsogiveashortalgorithmthatcanbe
used toconstruct Λ1(M3(GF(p))). As a consequence of our result we are also able to describe the graph Γ(M3(GF(p)) using theso-called"blow-up"process.The description of this graph was an open problem for several years.
wasanopenproblemforseveralyears.
Commuting graph,compressedcommuting graph,matrix ring,finite field
English
In thisthesisweinvestigatetherecentlyintroducedcompressedcommutinggraph Λ1(R)
of aunitalring R. Thisisagraphwhoseverticesareequivalenceclassesofelementsof R
according totherelation ∼ whichisdefinedas a ∼ b if andonlyif a and b generate the
same unitalsubring.Twoverticesareconnectedbyanedgeifandonlyiftheirrepresentatives
commute.Thisgraphcanbeseenasacompressionoftheregularcommutinggraph Γ(R). We
proveinthethesisthatformatrixalgebrasoverfinitefieldsthiscompressionisthebestpossible
compression thatinducesafunctorfromthecategoryofunitalringstothecategoryofgraphs.
Wealsodiscusssomepropertiesofthisgraph,forexample,thegraphgivesinformationabout
the setofunitalsubringsof R generated byoneelement.Thisviewwasappliedinourresult
characterizinginfiniteunitalringswithonlyfinitelymanyunitalsubrings.
In ourrecentarticlewewereabletocompletelydescribethegraph Λ1(M2(F)) for afinite
field F. Themaincontributionofthisthesisisthecompletedescriptionofthegraph Λ1(M3(F))
for aprimefield F = GF(p). Toachievethisgoalwecombinedmethodsfromfieldtheory,
projectivegeometryandcombinatorics.Wefirstdescribethesetofvertices,relyingonthe
Jordan formofmatrices,andthendeterminethestructureoftheneighborhoodofeachvertex.
The corepartofthegraphisthendescribedusingabijectivecorrespondencewithapoint-line
pairs intheprojectiveplaneover GF(p). Inaddition,wealsogiveashortalgorithmthatcanbe
used toconstruct Λ1(M3(GF(p))). As a consequence of our result we are also able to describe the graph Γ(M3(GF(p)) using theso-called"blow-up"process.The description of this graph was an open problem for several years.
wasanopenproblemforseveralyears.